Nuclear Structure from Gamma-Ray Spectroscopy

2019 Postgraduate Lectures

Lecture 8: Band Termination

11/20/2018

Nuclear Physics Postgraduate Lectures : E.S. Paul

Introduction: Band Termination

- A deformed <u>prolate</u> nucleus can increase its angular momentum by collective rotation about an axis <u>perpendicular</u> to its symmetry axis
- However, the nucleus is a <u>many-body quantal</u> system and such collective behaviour must have an underlying microscopic basis
- There is a <u>limiting</u> angular momentum that a given configuration can generate
- Successive alignments occur until all the valence particles are aligned and move in equatorial orbits giving the nucleus an <u>oblate</u> appearence

Band Termination: ¹⁵⁸Er

 A band <u>'terminates'</u> when all valence particles outside a doubly magic (spherical) core are aligned

Band Termination in ¹⁵⁸Er

- When the valence np protons and nn neutrons align, the total spin is: $I = \sum_{i}^{np} j_i(p) + \sum_{i}^{nn} j_i(n)$ and the rotational band is said to 'terminate'
- At termination ¹⁵⁸Er can be considered as a spherical ¹⁴⁶Gd core plus 4 protons and 8 neutrons, generating a maximum spin 46ħ
- The configuration is: $\pi(h_{11/2})^4 \otimes v(i_{13/2})^2(h_{9/2})^3(f_{7/2})^3$
- The terminating spin value of I_{max} = 46 is generated as: (11/2+9/2+7/2+5/2) + (13/2+11/2) + (9/2+7/2+5/2) + (7/2+5/2+3/2)

Favoured Oblate States

- Full termination represents the <u>maximum alignment</u> of <u>all</u> the valence particles outside a doubly magic core, consistent with the Pauli Exclusion Principle
- Certain noncollective states representing maximal alignment of a <u>subset</u> of the valence particles may be yrast leading to the observation of (energetically) favoured noncollective oblate states at a certain spin
- Example: In ^{157,158}Er energetically favoured states are seen at (I_{max} 6), corresponding to two f_{7/2} neutrons still being paired, i.e. they contribute 0 spin rather than 7/2 + 5/2 = 6

Noncollective Oblate States in ¹²¹I

- Low-lying states are seen at I = 39/2 and 55/2
 - ¹²¹I can be considered as a core (¹¹⁴Sn) plus 3 valence protons and 4 valence neutrons
- The configuration is $\pi \{h_{11/2}g_{7/2}^2\} \lor \{h_{11/2}^4\}$ with maximum spin 55/2

 If two of the protons remain paired we get the 39/2 state

Rigid Rotor Plot

- The favoured nature of noncollective oblate states can be seen by plotting energy levels against spin
- A rotating liquid-drop energy reference is subtracted:

$$E_{LD} = (\hbar^2/2\Im_{rig}) I(I+1)$$

 \Im_{rig} scaled to ¹⁵⁸Er, i.e. ($\hbar^2/2\Im_{rig}$) = 0.007 {158/A}^{5/3} MeV

Shape Coexistence

- Noncollective oblate states may coexist with collective rotational structures
- In ¹¹⁹I, collective structures are seen to the left and oblate states to the right

Smooth Band Termination

- A novel type of '<u>smooth</u>' band termination has been observed in several nuclei of the mass A = 110 region
- Bands extend to very high energy (frequency) and the spacings between the y rays increase (moment of inertia decreases)

Drift Through the γ Plane

- Smooth termination has been interpreted in the framework of the Cranked Nilsson Strutinsky method
- It represents a gradual shape change from collective prolate ($\gamma = 0^{\circ}$) to noncollective oblate ($\gamma = 60^{\circ}$) over a wide spin range

Abrupt and Smooth Termination

- The contrasting highspin behaviour of ¹¹⁷Xe and ¹²²Xe is shown here
- The rotational nature of ¹²²Xe <u>abruptly</u> breaks down above I = 22 ħ
- The behaviour of ¹¹⁷Xe appears more <u>smooth</u>

Termination Modes

Abrupt or <u>favoured</u> termination is shown at the top

 Smooth or <u>unfavoured</u> termination is shown at the bottom

Nuclear Physics Postgraduate Lectures : E.S. Paul

Nuclear Physics Postgraduate Lectures : E.S. Paul

Beyond Termination

- At termination, several valence particles are aligned with the 'rotation' axis outside an 'inert' closed core ('doubly magic' spherical core)
- How do we generate higher spin states?
- We must <u>break</u> the core and form energetically expensive particle-hole excitations across the magic shell gaps of the core
- A classic (state-of-the-art) case is the nucleus ¹⁵⁷Er which was studied with the Gammasphere spectrometer in Berkeley

¹⁵⁷Er at High Spin

 New high-energy (1.5-2.5 MeV), high-spin transitions have been identified above I^π = 87/2⁻, 89/2⁻ and 93/2⁺ (new) terminating states

¹⁵⁷Er Spectrum

Several (weak) transitions are seen in the energy range 1.0 - 2.5 MeV. Measured $\Delta I=2$ transitions are labelled as Q (quadrupole) and $\Delta I=1$ transitions as D (dipole)

¹⁵⁷Er Rigid-Rotor Plot

- Favoured oblate states are shown in gold
- It costs a lot of energy to generate states of higher spin
 - The Z=64 proton core has to be broken to generate the highest spins

High-Fold (Spikeless) Sorting

100 times weaker than SD band in ¹⁵²Dy

Structural Evolution in ¹⁵⁸Er

Nuclear Physics Postgraduate Lectures : E.S. Paul

What Shape Are the Bands?

- Do the TSD bands correspond to positive (+20°) or negative (-20°) gamma deformation?
- Theoretically, <u>positive</u> gamma is favoured at high spin

Quadrupole Moments

> DSAM lifetime measurement

> The slowing down in the Au acts as our clock

Nuclear Physics Postgraduate Lectures : E.S. Paul